

Miniature Ground Penetrating Radar, CRUX GPR

Soon Sam Kim, Steven R. Carnes, Albert F. Haldemann, JPL Christopher T. Ulmer, Ulmer Systems, Eddie Ng, A Star Technologies, Steven A. Arcone, US CRREL

Construction & Resource Utilization Explorer (CRUX) Instrument Suite for Lunar Missions

- CRUX: Instrumented drill (Prospector) and geophysical (Surveyor) regolith characterization instrumentation suite, and data integration-interpretation decision support system (Mapper-DSS).
- Miniature GPR as one of the CRUX Surveyor Instrument Suite.

Principle of GPR

GPR Reflections reveal dielectric properties through changes in phase, amplitude & dispersion

The reflection patterns will depend upon the ratios of dielectric constants, conductivity and permeability of layers.

Principle of GPR

The phase opposition between the reflections from the ice layer and either the channel ice bottom or the talik surface is consistent with the sequences of higher ϵ (frozen sediments) over lower ϵ (ice) vs., lower ϵ (ice) over higher ϵ (unfrozen or partially frozen sediments), respectively.

GPR for Lunar Missions

- Characterization of subsurface stratigraphy
 - Dielectric contrasts between layers
- Provide guidance for a trench based sampling for ISRU
- GPR will be deployed with a rover
 - Electronics in Rover Warm Electronics Box
 - Antenna placed under belly of a rover

CRUX GPR Summary

Miniature Impulse GPR

- @ 800 MHz Center frequency
- Depth of Penetration, 5 m; Resolution, 15 cm
- Low power (1 W) with box-car mode of sampling

Miniature CRUX GPR

Hardware

The sled (66 cm x 98 cm)

Indio, CA

Quester Gas Pipe lines 2 pipes @:

1.5 m depth76 cm diameter9 m separation

Dumont Dunes, CA

M N

Wind blown sand deposited on an alluvial plain

GPR data was manipulated to match the contour of the dune and show the horizontal plain at the bottom of the dune.

Kilauea Southwest Rift

Hawaii Volcano's National Park

- Layers of Volcanic Ash
 - Basaltic; pyroxene, plagioclase, olivine, magnetite and hematite
- Layer A
 - Laminated deposits of fine grained ash
- Layer B
 - Fine grained ash with heavy opaline silica sementation
- Layer C
 - Ash beds with silica cementation and larger cobbles
- Layer D
 - Desert pavement
 - Cobble sized rocks of basaltic composition with fine ash and aeolian dust

Lunar Application of GPR

Dielectric Properties of Lunar Soil from Apollo Missions

Dielectric Properties #				
		ε′	tan δ	dB/m @
				800 MHz
Moon	$\rho = 1.0$	1.843	0.0032	0.31
[6]	$\rho = 1.5$	2.502	0.0041	0.48
	$\rho = 2.0$	3.397	0.0054	0.72
Earth	Sandy	2.55	0.0093	1.08
[3]	Soil			
	Dry			
	Loamy	2.46	0.0055	0.63
	Soil,			
	Dry			
	Clay Soil,	2.36	0.019	2.12
	Dry			
	Magnetite	ε′	tan δ	dB/m @
	Soil, dry			800 MHz
		3.50	0.019	8.17
		μ′	tan δ _m	
		1.07	0.039	

Dielectric properties (radar attenuation rate, dB/m) of Lunar materials comparable with earth soil, between dry sandy and loamy soil